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Surface capillary-gravity waves are experimentally investigated in a cylindrical 
basin subjected to a horizontal oscillation by using a high-sensitivity optical method. 
We study the low-oscillation-amplitude regimes for a fluid which wets the vertical 
walls and we show that the presence of the capillary meniscus can effect greatly the 
main properties of the system. Both the free decay and the forced oscillations of 
surface oscillations are investigated. The amplitude, the phase and the damping of 
gravity waves are investigated in detail. The damping of the fundamental surface 
mode is found to exhibit nonlinear behaviour which is in qualitative agreement with 
the predictions of the Miles (1967) theory of capillary damping. The amplitude and 
the phase of gravity waves with respect to the oscillation of the container exhibit 
unusual behaviour which is strictly connected with the presence of the wetting 
boundary condition for the fluid at  the vertical walls. 

1. Introduction 
The methods for calculating the frequencies and the damping coefficient of 

standing capillary-gravity waves in a closed basin are well known (see, for instance, 
Lamb 1932, chapter 9). Standard theoretical approaches assume that the free surface 
intersects the vertical walls orthogonally and the contact line at the three-phase 
interface (solid, liquid and air) can freely slip (free-end edge boundary condition). By 
making these assumptions the eigenfrequencies and the damping of the gravity 
waves in a cylindrical container can be obtained (Ursell 1952; Case & Parkinson 
1957). According to Case & Parkinson (1957) the damping of capillary-gravity waves 
for a low-viscosity fluid is a function of the dimensionless small parameter 

where k, is the wavenumber of the nth oscillation mode of the free surface, v is the 
kinematic viscosity and on is its angular eigenfrequency which is given, for an ideal 
fluid and free-end edge boundary conditions, by 

on = [gk, (1 +ik:) tanh (k, h)]:, 

where g is the gravity acceleration, T is the surface tension, p is the mass density and 
h is the depth of the fluid. For low-viscosity fluids, as in the case of our experiment, 
8 is a very small parameter (8 6 1) and thus, one can obtain the damping rate y by 
using a perturbative procedure. Here y is defined by y,(t) = yn(0)eiWnte"Yt which 
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describes the free decay of surface oscillations of the nth mode. Many different 
mechanisms contribute to the damping of capillary-gravity waves in a cylindrical 
container of radius a :  

( a )  the viscous dissipation due to the motion in the bulk which gives the damping 
rate (Case & Parkinson 1957): 

( b )  the viscous dissipation within the thin boundary layer near the walls of the 
container. At the first order in the small &-parameter thc corresponding damping rate 
is (Case & Parkinson 1957 ; Mei & Liu 1973) : 

where n is the number of the mode (for the complete definition of n see $2); 
(c) other negligible contributions from the boundary dissipation a t  the free surface 

of the uncontaminated fluid (of the order of (v): (see Ursell 1952). 
By making a more sophisticated calculation Mei & Liu (1973) give also a correction 

of the angular frequency of the nth mode, due to the presence of a non-vanishing 
viscosity of the fluid, which is, at the first order in & :  

w, = gk, l + - k i  tanh(k,h) -27c(yw),. [ ( 3  I 
All previous results have been obtained by assuming free-end edge boundary 

conditions a t  the vertical walls. 
However, these ideal boundary conditions may not correspond to the real ones. In  

particular in most of the experiments, the contact angle 8 between the fluid-air 
interface and the vertical walls can be different from 90" and thus a meniscus occurs 
near the walls. Furthermore some experiments (Dussan V. 1979) seem to indicate 
that the contact line may remain a t  rest also in the presence of a fluid motion 
(pinned-end edge boundary condition). In particular this new boundary condition 
seems to be appropriate to  describe the edge constraint for a rim-full container. 
Benjamin & Scott (1979), Graham-Eagle (1983, 1984) and Douady (1988, 1990) use 
this new boundary condition for determining the eigenmodes and the eigen- 
frequencies of surface gravity waves in a rim-full container. The new boundary 
condition makes the theoretical analysis much more difficult. 

In  real systems we can expect that the behaviour of gravity waves could be 
somewhat more complex and intermediate between these two limiting cases (free-end 
edge and pinned-end edge boundary condition). In  fact there is a large amount of 
experimental evidence (see, for instance, Dussan V. 1979) indicating that the 
behaviour of the contact line is very complex. According to the Young-Laplace 
equation the contact angle should be fixed and equal to 8, in static conditions. 
However, the experiments indicate that a range of possible static angles, centred on 
the Young-Laplace angle, is allowed to  exist. This static range is exceeded when the 
contact line moves. For high enough speeds of the contact line the contact angles of 
advance and recession of the fluid assume two different and nearly constant values 
8, and 8,. For small enough hydrodynamic velocities (v < 0.4 mm/s) the &angle 
varies continuously from the static values to the limiting dynamic values 8, and 8, 
as the velocity of the fluid increases. Therefore we can expect three main regimes as 
a function of the amplitude of gravity waves. 
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(i) A low-amplitude regime where the slope of the gravity wave at  the vertical wall 
lies within the static range of contact angles. In this case the contact line can remain 
at  rest and the hydrodynamic problem should be described by using the pinned-end 
edge boundary condition. 

(ii) An intermediate-amplitude regime where the slope of the gravity wave 
exceeds the static range of contact angles and thus the contact line moves and the 
contact angle is an increasing function of the velocity. 

(iii) A high-amplitude regime above a characteristic value of the velocity vc where 
the contact angle of advancing and receding fluid have almost constant values (0, 
and 6,) during the surface oscillation. We expect that this latter case could be 
described by the usual free-end edge boundary condition. 

A very special case occurs when the contact angle between the fluid and the 
vertical walls is 0" (wetting boundary condition). In this case the contact line can 
move in only one direction, that of the liquid displacing the gas. In the opposite case 
(receding liquid), a thin layer of liquid is left behind.? The thickness of this layer 
depends upon the speed of the retreating liquid. This draining film could greatly 
influence the dynamic properties of the system and modify regimes (i), (ii) and (iii). 
Unfortunately, to the best of our knowledge no theoretical model concerning the 
effect of this film on the surface gravity waves has been proposed. 

In two recent theoretical papers Hocking (1987a, b )  proposed a new phenom- 
enological linear boundary condition which partially simulates the complex 
behaviour of a real fluid-solid interface. To make the theoretical analysis possible he 
makes the simplifying assumptions that the static range of contact angles is 
negligibly small (regime (i) is absent) and the free surface of the fluid at  rest is 
everywhere flat (0, = 90"). Furthermore he assumes that the contact angle increases 
linearly with the speed of the contact line. This model includes, as limiting cases, 
both the free-end and the pinned-end boundary conditions. By using this new 
boundary condition he calculates the eigenfrequencies and the damping rate of 
capillary-gravity waves in a rectangular uniform channel. The resulting theoretical 
expressions for the damping rate of surface waves and for the resonance frequency 
of the surface modes are very complex and their investigations require a numerical 
analysis. In the limiting cases (free-end and pinned-end) Hocking recovers the known 
results (Mei & Liu 1973 ; Case & Parkinson 1957). 

The damping of capillary-gravity waves in the case of regimes (ii) and (iii) has been 
investigated theoretically by Miles (1967) who also assumes no static range of contact 
angles and a linear dependence of the contact angle on the velocity in the range (ii). 
Miles also considers the possible contribution of a thin viscoelastic film on the free 
surface. Therefore two new contributions to the damping rate are expected: 

( d )  the viscous dissipation at  the free surface X characterized by the damping rate 
Ys; 

( e )  the viscous dissipation due to capillary forces at the contact line L characterized 
by the damping rate y,. 

The viscous dissipation rate at the free surface due to the presence of a surface 
viscoelastic film, a t  the first order in the small parameter E ,  is found to be 

where the coefficient Cn is zero in the case of an uncontaminated free surface. If the 
free surface is covered by a thin viscoelastic film, Cn depends greatly on the 

t This important point has been pointed out by one of the Referees. 
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properties of the surface film and on the number n of the mode. For the fundamental 
non-axisymmetric mode n = 1 of a cylindrical container of radius a, C, ranges from 
a minimum value C, = 0 to a maximum one C, = 2 .  C, = 1 for an inextensible surface 
film. 

The size of the (yl),-capillary contribution to the damping rate has been estimated 
by Miles by assuming that the contact angle 8 a t  the wall is a function of the 
hydrodynamic velocity v of the contact line according to the experimental evidence 
(e.g. Ablett 1923). Therefore a Coulomb-like frictional force 

F = qcos qv) - cos e,) (1.7) 

acts on the contact line between the fluid free surface and the walls. 8, is the static 
contact angle which is assumed to have a unique value (no regime (i)). An analytic 
expression for the damping rate (x), can be obtained by making the simplifying 

(1.8) 

for v << v, (regime ii) and cos8(v)-cos8, x E for v 4 v, (regime iii) where is a 
dimensionless coefficient. For the fundamental mode n = 1 of a cvlindrical container 

assumption that V 
cos e(v) - cos 8, w E -  

V C  

for v << vc, and (1.10) 

for v > v,, where A is the maximum displacement of the free surface from its 
equilibrium position. In  the case of water on wax, Ablett (1923) found v, x 
0.4 mm/s. 

We notice here that the capillary damping rate of (1.10) exhibits a strong 
dependence on the A-displacement of the free surface. In  the case of a cylindrical 
container of radius a = 50 mm, the resonance frequency is v w 3 Hz and, thus, the 
critical velocity v, corresponds to a maximum displacement of the fluid a t  the 
vertical wall A, x w,/27cu x 0.02 mm, which is very small if compared with the radius 
a (AJa  w 0.0004). Therefore the strongly nonlinear behaviour of (1.10) occurs when 
the oscillation amplitude of the free surface is still very much smaller than the typical 
amplitude values for which nonlinear gravitational effects can become relevant 
(Miles 1984). 

Case & Parkinson (1957) measured the damping rate y ,  for the first mode, for water 
in some cylindrical containers and compared their experimental results with the 
theoretical value of the viscous dissipation rate yw (equation (1.4)). They found that 
the ratio y/(yW), ranged from a maximum of 3 prior to polishing the cylindrical walls 
and approximated unity for a carefully polished brass cylinder. Therefore they infer 
that the observed discrepancies were related with the capillary effects a t  the walls 
(yl),. However, according to Miles, the presence of a surface inextensible layer on the 
free surface due to contamination (see Van Dorn 1966) could also explain the 
observed discrepancies. This mechanism seems to be the most relevant one in the 
case of the experiments performed by Keulegan (1959). Therefore a detailed 
investigation of the dependence of the damping rate on the free-surface maximum 
displacement A should contribute to clearly distinguish between these two different 
mechanisms since the contribution ( 1 , l O )  is strongly nonlinear. 

Finally it should be remembered that the observed resonance frequencies of 
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surface waves often differ very much (e.g. Case & Parkinson 1957) from the 
theoretical one (equation (1 A)) calculated using the free-end edge boundary 
condition; in fact they can be greatly affected by the boundary conditions at the 
sidewalls of the container as showed by Benjamin & Scott (1979), Graham-Eagle 
(1983, 1984) and Douady (1988, 1990). 

In this paper we report new experimental results concerning the low-amplitude 
regimes of surface capillary-gravity waves for a low-viscosity fluid (octane) in a 
cylindrical container. The resonance curves and the free decay of surface modes are 
investigated in detail by using a high-sensitivity optical apparatus which allows us 
to detect very low-amplitude surface oscillations. The case of a wetting boundary 
condition is investigated. Here ‘wetting’ means that the static contact angle is B0 = 
0. We find that the free decay of the fundamental surface mode ( k , a  = 1.8412) 
exhibits a non-exponential behaviour due to an amplitude dependence of the 
damping rate y. The damping y is found to decrease by increasing the amplitude of 
the surface oscillation. A n  analogous dependence on the amplitude is found for the 
eigenfrequency of the fundamental mode. This nonlinear behaviour is also found by 
looking a t  the resonance curve of the fundamental mode. The nonlinear dependence 
of the y-coefficient is in qualitative agreement with the predictions of Miles’ theory 
(equations (1.9) and (1.10)). However, we point out that Miles’ theory does not 
account for the draining film which should be present for wetting boundary 
conditions. Therefore the qualitative agreement with our experimental results could 
be fortuitous. Finally the response of the free surface to a monochromatic horizontal 
oscillation of the container has been investigated in detail as a function of the 
excitation frequency (resonance curves for the gravity surface waves). The amplitude 
of the surface oscillations respectively in phase and 90’ out of phase with the driving 
oscillation have been measured as a function of the oscillation angular frequency w .  
In the case of wetting boundary conditions the eigenfrequencies of surface modes are 
satisfactorily described by (1.5), which can be deduced from the free-end edge 
boundary condition, but their amplitudes and phases exhibit an unusual behaviour 
which is not observed for different boundary conditions. The same qualitative 
features have been found by using water wetting a cylindrical container. 

2. Surface capillary-gravity modes in a cylindrical container 
In this section, for completeness, we remind readers briefly of the main theoretical 

results concerning the surface waves in a low-viscosity fluid contained in a cylindrical 
basin of radius a. 

We consider a fluid of depth h subjected to a horizontal oscillation at the angular 
frequency w. The local displacement T ( r ,  0, t )  of the free surface with respect to the 
horizontal equilibrium position can be written as 

where r and 0 are planar polar coordinates (0 is the angle with respect to an 
horizontal x-axis), ~ n ( r ,  0 )  are the eigenmodes of the surface, Tn(t)  are the amplitudes 
and the repeated indices are summed over the participating modes. The eigenmodes 
depend greatly on the kind of boundary conditions at  the vertical walls. In  the 
simplest case (free-end edge boundary conditions) the eigenmodes are given by 

= N;: J,(k, ,  r )  (cos i0, sin ie), i = 0, 1 , 2 ,  . . . , j = 1,2,3,  . . . ; (2.2 a )  

~ ( r ,  0,  t )  = Tn(t)  PnC.9 e), (2.1) 

@ n -  = 

(2.2b, c) 
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where Ji is a Bessel function of the first kind and k i , j  is one of the discrete set of 
eigenvalues given by the condition (2.2b). The superscripts c or s correspond, 
respectively, to the cosine or sine azimuthal dependence in (2.2a),  respectively. For 
the fundamental non-axisymmetric mode (n = 1 ; i = 1 , j  = 1) the amplitude vl is 
related to the previously defined maximum displacement A (see (1.10)) by 

(2.2d) 

If the basin is subjected to an oscillation x( t )  = xocosot along the x-axis and 
nonlinear effects are negligible (Miles 1984), only the surface deformation showing 
the cosine @dependence with i = 1 can be excited. Therefore, in the following, we 
maintain the unique index n by setting I), = I):.,. The eigenfrequencies on which 
correspond to the eigenmodes are given by (1.5) where k, = k1,,. To the best of our 
knowledge, no exact theoretical expression for the equation of motion of the 
amplitude r,(t) of the nth mode in the presence of a forcing term has been proposed 
so far. Miles (1976, p. 424) made the simple assumption that the damping 
contribution to the generalized force is a linear function of the first time-derivative 
of the mode amplitude. Although this assumption seems to be reasonable, it is 
essentially a phenomenological assumption and its validity conditions are not well 
established. By making this assumption Miles found the following equation (here we 
neglect the nonlinear contribution) : 

where we have defined the amplitude of the generalized force 

where x,, is the oscillation amplitude of the basin ( x ( t )  = xo cos w t )  and 

A =  71 Jl(k1, 1 a )  
N1,l 

F, cos wt = k,' coth k, h(ij, + 2 5 ~ ~ ~ 4 ,  + W: q,), (2.3) 

F, = W'X,  x,,, (2.4) 

x ,  = (na2)-' 1 X I ) ,  r dr  do, 

and where yn corresponds to  the damping rate for the nth mode. For the 
fundamental mode (n = 1 )  one finds 

1.8412 
a 

, x1 = 0.4968a, Nl,l = 0.3455, Jl(k,a) = 0.5819. (2.6a-d) 

Equation (2.3) can be easily solved to obtain the response of every mode to the 
excitation signal. For a fixed value of the generalized force F, we find the standard 
Lorenzian resonance curve with a dephasing of 90' between v,(t) and the oscillation 
x ( t )  of the vessel a t  the resonance frequency. 

All these theoretical results hold only in the case of a free-end edge boundary 
condition. Much more complex results can be obtained by considering different 
boundary conditions such as the already cited pinned-end edge (Benjamin & Scott 
1979 ; Graham-Eagle 1983, 1984) and the contact-angle boundary condition recently 
proposed by Hocking (1987a, b ) .  

k, = ~ 

3. Experiment 
3.1. Apparatus 

The experimental set-up is the same as that used by Nobili et al. (1988) to investigate 
the nonlinear behaviour of surface gravity waves (see figure 1)  and is similar to that 
used independently by Douady (1990). 
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FIGURE 1. Schematic view of the experimental apparatus. L = loudspeaker ; OB = brass bar ; 
SB = stainless-steel bars; LB = laser beam; BB = ball-bearing; MD = electromagnetic device to 
measure the carriage displacement ; C = cylindrical container ; PP = position-sensitive photo- 
detector. 

The fluid (octane) is contained in a cylindrical tank of radius a = 50.25 mm. The 
container (C) is supported by a carriage with four ball-bearing (BB) that can slip on 
two horizontal stainless-steel bars (SB). The residual vibrations induced by this 
mechanical apparatus are negligible with respect to the smallest driving amplitude 
we use. The oscillation is driven by a 150 W loudspeaker (L) that is connected to the 
carriage and to the end of a brass bar (OB) stiffly connected at the other end to a 
vertical wall of the room. The brass bar (8 x 28 x 126 mm) allows the effects of the 
fluid recoil to be greatly reduced. Under these conditions we obtain, without any 
feedback loop, an amplitude stability of the carriage oscillation better than 0.1 'YO 
and harmonic components less than 0.5%. The driving signal is produced by a 
synthesizer having a resolution of 1 mHz. The oscillation amplitude x,, of the 
container is measured with a magnetic device (MD) having a minimum sensitivity of 
1 pm and a linearity better than 0.5 'YO. The local displacement ~ ( r ,  8, t )  of the free 
surface is detected by means of a laser beam (LB) that impinges orthogonally on the 
bottom of the container, then is refracted by the free surface of the fluid and finally 
is collected by a dual-axis position-sensitive photodetector (PP). The photodetector 
gives two output signals (V, and V,) that are proportional to the displacement of the 
laser spot on the photosensitive surface of the photodetector with respect to its 
centre. Therefore these signals, for small enough 7-values, are proportional to the 
spatial derivatives aq/ax and aqlay at the incidence point (xo, yo), where x and y are 
the axes of the photodetector (x is oriented along the oscillation axis of the carriage). 
The laser beam is mounted on a two-axes precision translator which allows us to 
change in a continuous way the incidence point of the laser beam so that we can 
reconstruct the surface deformation q at each point of the free surface by integrating 
the output signals. The main advantages of this experimental apparatus are a very 
high sensitivity to surface deformations and the non-perturbative character of the 
method (no sensing element is introduced in the fluid). In  particular, amplitudes of 
surface waves smaller than 1 pm can be easily detected. This allows us to investigate 
in detail the very low-amplitude regimes where the capillary effects can play an 
important role. 
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Two main kinds of experiments have been performed. I n  the first experiment the 
carriage oscillates at a frequency close to  the resonance frequency of the fundamental 
mode and is stopped at a given time. The consequent decay of the output oscillating 
signal of the photodetector is recorded by using a digital waveform analyser (Data 
Precision-DATA6100). Three hundred and fifty free decay signals are averaged in 
such way as to reduce the spurious noise. Since the initial phase of the decay of 
surface oscillations is somewhat arbitrary, the average is performed by triggering the 
waveform analyser to correspond with the zero-crossing of the signal. An alternative 
and faster procedure to reduce the spurious noise consisted in constructing the auto- 
correlation function of the free decay signal. 

I n  the second kind of experiment, the resonance curves of the surface eigenmodes 
were investigated by sweeping continuously the oscillation frequency of the 
loudspeaker and by measuring the response signals a t  the same frequency in phase 
and 90" out of phase with the oscillation x(t)  of the carriage. The sweep time was 
about two hours for each resonance curve. This time was chosen so that for each 
frequency point the acquisition time was much greater than the characteristic decay 
time (7, = l / x y ,  < 100 s). The experimental results were memorized on a computer 
and the characteristic parameters of each resonant mode (resonance frequency and 
half-width) were obtained by a numerical fitting procedure. 

I n  order to confirm the generality of the observed phenomena we have also 
performed some partial measurements by using bi-distilled water. The wetting 
condition, in this case, was obtained by using a glass cylindrical container carefully 
washed with sulfochromic acid. The internal radii of the cylinders were 50.25 mm 
and 48.25 mm for octane and water respectively. In  both cases the fluids wetted the 
vertical walls of the containers. The contact angle at the fluid-solid interface, for 
both fluids, was experimentally checked by measuring the refraction of a laser beam 
by the fluid wedge and was found to be zero within our experimental accuracy 
(AB0 < 2"). 

3.2. Free decay and resonance curve of the fundamental mode 
Before measuring the damping coefficient for the fundamental mode we measured 
the spatial shape of this mode. Figures 2 ( a )  and 2 ( b )  respectively show the 
experimental results concerning the dependences of i3r(r, 8 = O ) / &  and r ( r ,  8 = 0) for 
octane. These two functions are indicated with the notations aq/ax and ~ ( x )  in 
figures 2 (a)  and 2(b),  where x is the displacement from the centre of the free surface 
along the x-axis. The depth h of the fluid was 78 mm and the radius of the container 
was a = 50.25 mm. The solid lines in figure 2 correspond to the best fit of the 
experimental data using the function ~ ( x )  = A(J, ( k , x ) / J , ( k , a ) ) ,  with A as a free 
parameter. Within the accessible experimental range (up to x 5 mm from the wall of 
the cylinder), the surface profile is in very good agreement with the predictions of the 
theory for a free-end edge boundary condition. Analogous results have been obtained 
using water. We remind readers that, for the fundamental mode, the maximum 
displacement A of the free surface is given by 

2J1(k1a) ay(r = 0 , 8  = 0) ar(r = 0, 8 = 0) 
A =  = 31.76 mm 

(for a = 50.25 mm). Therefore, by measuring aq(r = 0, 8 = O)/ar ,  we obtain the 
amplitude A .  I 

The free decay of the surface fundamental mode in octane is shown in a linear and 
in a semi-logarithmic scale in figures 3 (a )  and 3 ( b )  respectively. The vertical axes 

kl ar ar 
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FIGURE 2. (a) Derivative Q/ax of the surface displacement ~ ( x )  versus the ratio between the 
distance x from the cylinder axis along the x-axis and the cylinder radius a. ( b )  Surface 
displacement ~ ( x )  versus x/a as obtained by integration of the experimental points of (a). The 
oscillation amplitude of the carriage is z,, = 7.89 x mm ; the depth of the fluid is h = 78 mm and 
the radius of the cylindrical container is a = 50.25 mm. The oscillation frequency v corresponds to 
the resonance frequency for the fundamental mode (v = 2.993 Hz). 

show the value of the amplitude A .  A detail of the curve is shown in the insert of 
figure 3 (a) .  The points in the insert are the experimental results whilst the solid line 
corresponds to the best fit made by using the local expression: 

A(t )  = A ,  e-'YT t' cos ( ~ R v ,  t' +Q),), (3.1) 

where t' = t - T and T is the value of time at  the centre of the time interval [ t l ,  t , ]  (in 
the insert of figure 3(a), t ,  = 24 s, t ,  = 28 s and T = i ( t l + t , )  = 26 9). A,, y,, u,, Q), 

are fit parameters that correspond to the oscillation amplitude, the damping rate, the 
frequency and the phase at  the time T .  

The slope of the curve in figure 3 ( b )  increases with increasing time. This means that 
the damping coefficient must be a decreasing function of the oscillation amplitude of 
the fundamental mode. By using the previously defined fit procedure (see (3.1) and 
the insert in figure 3a),  we have been able to obtain the dependence of y and that of 
the oscillation frequency of the decay signal (it coincides practically with the 
resonance frequency v1 of the fundamental mode) on the amplitude A .  The values for 
y and v1 versus A are plotted in figures 4(a) and 4 ( b )  respectively. The damping rate 
y is almost constant and equal to yo x 34 mHz for A lower than a characteristic value 
A ,  x 0.15 mm, then it decreases to reach an almost constant value y1 x 26 mHz for 
A % A,. The solid line in figure 4(a)  corresponds to the best fit of the experimental 
results by using a trial function of the form: 

AY = 
-t [ 1 + (A/A,)"]'/" ' 

where yo, Ay and A ,  are fit parameters and n is chosen to be n = 6 .  This function has 
been chosen in such a way as to qualitatively reproduce the behaviour given by (1.9) 
and (1.10). In fact y x yo+Ay  = const. for A 4 A,  and y x yo+AyA,/A for A $ A , .  
By increasing the value of n one obtains a sharper transition from the A < A ,  regime 
to the other one. The quality of the fit remains almost the same for any value of n 
greater than 3. 

The frequency v1 decreases continuously by increasing the amplitude A ,  from a 
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FIGURE 3. (a)  Free decay of surface oscillation versus time. The vertical axis shows the value of the 
maximum displacement A a t  the cylinder ( A  = ~ ( a ) ) .  In the insert a detail of the curve is shown. 
Points correspond to the experimental data whilst the solid line corresponds to the best fit to the 
theoretical form: A ( t )  = A.e-"y~1'cos(25cv, t '+~,) ,  where t' = t - T ,  with T = 26 s. ( b )  The free 
decay of (a )  using a logarithmic scale on the vertical axis. The broken line shows the slope of the 
free decay a t  small times (larger amplitudes). The depth of the fluid is h = 78 mm and the radius 
of the cylindrical container is a = 50.25 mm. 

maximum value of vt x 2.997 Hz, to a minimum value v: x 2.990 Hz. We note that 
the theoretical resonance frequency for the fundamental mode and for free-end edge 
boundary condition is given by (1.5). By using the known value of the surface tension 
T and of the kinematic viscosity v of octane (T = 21.80 dynes/cm and v = 
0.00772 cm2 s-l, Weast 1970) we obtain vih = 3.000 Hz. If we compare this value 
with the limit value for A B A ,  we find vih - vi x 0.010 Hz. Analogous dependences 
of y and v1 on the amplitude A have been found by using water wetting a glass 
cylinder. 
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FIQURE 4. (a) Damping coefficient y versus the maximum displacement A of the free surface for the 
fundamental mode. The solid line corresponds to the best fit of the experimental points using the 
trial function (3.2), where n = 6. The values of yo, Ay and A, of the best fit are yo = 25.4 mHz; 
Ay = 8.8 mHz and A, = 0.145 mm. (b) Frequency of the free damped oscillation of the surface 
versus the maximum displacement A .  The depth of the fluid is h = 78 mm and the radius of the 
cylindrical container is a = 50.25 mm. 

An alternative method to investigate the decay rate y and the resonance frequency 
v1 of the fundamental mode consists of analysing the resonance curve. This curve is 
obtained by sweeping the oscillation frequency of the cylindrical tank at a constant 
amplitude of the generalized force F, (see (2.4)). The experimental value of the 
maximum surface displacement A versus the frequency v is shown in figure 5(a). The 
solid line corresponds to the best fit of the experimental results to the Lorenzian 
form : 

which can be obtained as a solution of (2.3) (with n = 1) by assuming no amplitude 
dependence for y and vl. Far from the resonance frequency there is a small but 
significant difference between theory and experiment. One can easily show that this 
discrepancy is not due to the presence of higher-order surface modes since the 
contribution of these modes in this frequency range is completely negligible. Figure 
5 ( b )  shows the same experimental points as figure 5 ( a ) ,  whilst the solid line 
corresponds to the best fit obtained by using (3.3) with amplitude-dependent values 
of y and v1 as in figures 4(a) and 4(b). We can see that within our experimental 
uncertainty ( ~ 2  %) the solid line in figure 5 ( b )  fits the experimental data well. 
Therefore both the damping curve and the resonance curve give strong evidence for 
nonlinear behaviour of the system a t  very small amplitudes. We note that the 
characteristic critical amplitude A ,  where the nonlinear behaviour becomes evident 
(see figure 4a) is very small (A,  x 0.15 mm) and corresponds to a critical 
hydrodynamic velocity on the sidewall vc = wA x 2.83 mm/s. These amplitudes are 
much smaller than those for which the effects due to nonlinear coupling between 
modes play some role (Miles 1984; Funakoshi & Inoue 1988; Nobili et al. 1988). 

To the best of our knowledge so far the only theoretical model which can account 
for an amplitude dependence of the decay rate qualitatively similar to that shown in 
figure 4(a)  is the Miles theory of capillary damping. In particular, as experimentally 
observed, this model predicts that the damping coefficient y assumes its maximum 
and constant value for very low amplitudes (v < v,) ( y  = (Y,)~ + (yb)l + (Y,)~ +y ; ) ,  
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FIQURE 5. (a )  Amplitude A versus the frequency for the fundamental mode. The parameters of the 
experiment are h = 78 mm, a = 50.25 mm. The product of the carriage oscillation amplitude zo and 
the square of the frequency v2 is held constant during the frequency sweep at the value xo v2 = 
0.0367 mm/s2. The solid line corresponds to the best fit of the experimental points to (3.3). The fit 
parameters x, v1 and y are: = 0.00503 mm/s4, v 1  = 2.993 Hz, y = 29.4 mHz. ( b )  The same 
experimental data as (a) but the solid lines correspond to the resonance curve which we obtain by 
using (3.3) with the experimental values of v1 and y given in figures (4(a) and 4(b)  and by putting 
A = 0.00 503 mm/s4. 

whilst, for v > vc, one expects that  the capillary contribution y1 decreases and goes 
to zero as the amplitude A increases according to (1.10) ( y ;  cc 1/A) and thus, the limit 
value of y is expected to be y = (Y , )~  + ( Y b ) l +  ( Y ~ ) ~ .  

The two viscous contributions (Y,)~ and (yb)l at room temperature can be 
calculated by using (1.3) and (1.4) with n = 1 and v = 0.00772 om2 s-l (Weast 1970). 
We find (yw)l+(yb)l = 16.3 mHz. By comparing this damping coefficient with the 
experimental one at larger oscillation amplitudes we find yexp-yth x 10 mHz which 
could be interpreted by assuming that a thin viscoelastic film is present on the free 
surface ((Y,)~ x 10 mHz). However, it is important to notice that the surface tension 
of octane is very small ( x 2 0  dynes/cm) and thus, one could expect that no 
contamination film is present on the free surface. Therefore a direct investigation to 
provide evidence for the presence of this surface film is needed. The difference 
between low- and high-amplitude values of y could be then interpreted as due to the 
y; capillary contribution (y;  x 8 mHz). Furthermore it is not clear how the Miles 
model can be extended to the case of a wetting boundary condition. In  particular a 
moving contact line in the case of wetting boundary conditions could not be present 
and the effect of the draining film a t  the vertical walls could be dominant. Therefore 
the agreement between the nonlinear damping behaviour and the Miles model could 
be only fortuitous. A detailed theoretical analysis of the dynamic properties of the 
draining film would be needed in order to understand the nonlinear behaviour 
properly. Furthermore none of our attempts to obtain evidence for a variation of the 
contact angle during the motion, by direct visual analysis of the meniscus, were 
successful. 

3.3. Resonance frequencies and damping rate of higher-order surface modes 

In this section we investigate the resonance curves for the higher-order surface modes 
( n  > 1)  in (1.5)). The experimental method consisted in measuring simultaneously 
with a lock-in the in-phase component and the 90" out-of-phase component of the 
output signal of the photodetector. The laser beam (see figure 1) impinged a t  the 
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FIGURE 6. Oscillation energy E = 6; of the tilt angle go at the centre of the fluid surface versus the 
frequency for a fixed value of xo (0.00408 mm). The resonances correspond to the first 15 surface 
modes (see (2.1)-(2.2~)). The depth of the fluid is h = 78 mm and the radius of the cylindrical 
container is a = 50.25 mm. 

centre of the free surface of the fluid in such a way that the tilt angle of the free 
surface e = tan e = a~/arl,,o,o-o at the centre of the container could be obtained. If 
the carriage oscillation is z(t) = xOcoswt, the tilt angle changes with time as 

(3-4) 

and S; are the in-phase and the 90’ out-of-phase amplitudes with respect to 

( 3 . 5 ~ )  

E = 6;. (3.5b) 

The oscillation amplitude xo of the carriage is maintained constant during the 
frequency sweep. Figure 6 shows the experimental energy resonance curve for the 
first 15 modes where the energy E of the oscillation at  a given frequency is plotted (see 
( 3 . 5 b ) ) .  We notice that the half-width of the resonances increases as the frequency 
increases and, thus, some overlap of resonances, for v > 10 Hz, occurs. The resonance 
frequencies v, and the damping rates y, of the modes can be obtained by making a 
fit of each resonance curve by using a Lorenzian form such as that of (3.3) with v,, 
?,,A, in place of vl, y1 and X, respectively. The free parameters of each fit are v,, yn 
and A,. We note that the phenomenological equation of motion (2.3) in the case of 
free-end edge boundary conditions predicts the amplitude of each mode for a given 
value of the amplitude of the generalized force if Y, is known. The values of the 
resonance frequencies v, versus the product k ,  a are shown in figure 7 (a) .  The solid 
line in figure 7 (a )  corresponds to the best fit of the experimental results using the 
theoretical expression (1 .5)  with the surface tension T as a free parameter. The value 
of T which is obtained from the best fit is T = 20.58 dynes/cm. Discrepancies 
between theory and experiment cannot be distinguished in figure 7 (a). Therefore the 
difference between experimental and theoretical values of v, is shown in figure 7 (b ) .  
We notice that the relative difference between the theoretical value of the resonance 
frequency and the experimental one is always lower than 0.5 %. Therefore one can 
conclude that, as far as the eigenfrequencies are concerned, the free-end edge 
boundary conditions describe satisfactorily the behaviour of a wetting fluid. 

&t)  = Gr cos wt + ei sin wt 

where 
the carriage oscillation. The oscillation amplitude E$ is, then, defined by 

Go = ((7; + @$ 
and the adimensional energy is defined by 
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FIGURE 7.  (a) Resonance frequency of each mode versus the product k, a between the wave vector 
and the container radius. The solid line corresponds to the best fit of the experimental results 
obtained using the theoretical expression (1.5) with the surface tension T as a free parameter and 
using the theoretical expression for ( Y , ) ~  given in (1.4). The mass density and the kinematic 
viscosity coefficients are respectively, p = 0.702 g/cm3 and v = 0.00772 cm2 s-l (Weast 1970) 
whilst the value of the gravity acceleration is g = 980.5 cm/s. The value of T given by the best fit 
is T = 20.58 dynes/cm. ( b )  Difference between the theoretical resonance frequency of the nth mode, 
given by (1.5), and its experimental value. The depth of the fluid is h = 78 mm and the radius of 
the cylindrical container is a = 50.25 mm. 

SO 
k” a 

0 

FIGURE 8. Damping rate yn of the nth mode versus the product k, a. The broken line corresponds 
to the viscous damping coefficient ( Y , ) ~  of (1.4). The solid line corresponds to the viscous damping 
y, = ( Y , ) ~  + (yb), (see (1.3) and (1.4)). The depth of the fluid is h = 78 mm and the radius of the 
cylindrical container is a = 50.25 mm. 

Figure 8 shows the experimental values of the damping rate yn  versus kna.  The 
broken line in figure 8 corresponds to the decay rate ( yw)n of (1.4) as predicted by the 
viscous dissipation rate near a vertical wall at  the first order in E .  The solid line 
corresponds to the viscous decay rate given by the sum of bulk contribution (Y , , )~  and 
the wall contribution ( Y ~ ) ~ .  It is evident that, although the bulk contribution is 
proportional to e2, it is negligible only for the first modes and becomes dominant at  
higher n. 

A large systematic difference between theory and experiment is found for all 
modes. This difference could be related to the second order contributions in e2 which 
have been neglected in calculations of the viscous dissipation rate (yw),. Furthermore 
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FIQURE 9. Oscillation amplitude go of the tilt angle of the free surface at the centre of the cylinder 
versus the frequency for the 7th mode. Points correspond to the experimental results, whilst the 
solid line corresponds to the best fit of the experimental data to the theoretical expression (3.6). The 
free parameters of the best fit are the amplitude B,, the resonance frequency v, and the damping 
rate y7(B7 = 1.57 x v, = 12.609 Hz, y, = 0.227 Hz). The oscillation amplitude of the carriage 
is xo = 0.00408 mm, the fluid depth is h = 78 mm, and the cylinder radius is a = 50.25 mm. 

other contributions, such as those considered by Miles (equations (1.6) and (1.9)), can 
also play an important role. Furthermore the effect of the draining film a t  the 
vertical walls could also be relevant t o  our experiment. Unfortunately many 
unknown parameters enter in the theoretical Miles expression for (yJ,  and 
(ys), (5, C,(k,))  and, thus, a direct comparison with the experimental results is not 
possible. 

3.4. Amplitude and phase of the forced oscillation of the free surface 

The presence of the meniscus a t  the vertical walls produces very important effects on 
the amplitude and the phase of the response of the fluid free surface to the carriage 
oscillation ( x ( t )  = zocoswt). Figure 9 shows the amplitude 6 (see ( 3 . 5 ~ ) )  of the mode 
n = 7 versus the frequency. Points correspond to  the experimental results, whilst the 
solid line represents the best fit of the experimental results to the theoretical 
dependence of (3.6) which is obtained by solving (2.3) for a constant value of the 
oscillation amplitude xn : 

B, is a constant coefficient. We see that the phenomenological equation (3.6) 
describes satisfactorily the behaviour of the system. Figure 10 shows the ratio 
between the experimental value Bn and its theoretical value versus the product 
k ,  a. The theoretical value of En is calculated by solving (2.3) and by using (2.1) and 
(2.2). We find: 

- 
, (3.7) 

where k,  is given by (2.2b), N ,  = N l , ,  is given by ( 2 . 2 ~ )  and x ,  is given by (2.5) (for 
n = 7 we have k, = 21.16437/a, x7 = 0.00316a and N7 = 0.1225). We see clearly that 
the amplitudes of the modes are in satisfactory agreement with the theoretical ones 
only for the first modes. This clearly indicates that (2.3) does not describe the real 
behaviour of the surface waves. 

xo x ,  k2, tanh (k, h)  

mn 
(Bnh = 
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FIQURE 10. Ratio between the experimental value of B, and the theoretical expression (B,Jth of 
(3.7) as a function of k,a. The experimental conditions are the same as figure 9. 
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FIQURE 11. Waveveckr dependence of (a) the in-phase oscillation amplitude and ( b )  the 90" out- 
of-phase component 0, of the oscillation amplitude. The experimental conditions are the same as 
figure 9. Points correspond to the experimental results, whilst the solid line corresponds to the 
theoretical prediction that can be obtained by solving (2.3) for (a) the in-phase and ( b )  the 90" out- 
of-phase components of the surface oscillation and by using the parameters B,, v, and y, given by 
the best fit in figure 9 (B, = 1.57 v, = 12.609 Hz, y, = 0.227 Hz). 

Another stronger deviation from the predictions of (2.3) is found if one looks a t  the 
phase of the forced free oscillations. Figures 11 ( a )  and 11 ( b )  show the wavevector 
dependence of the in-phase and 90' out-of-phase components of the surface 
oscillation (q and in (3.4)). Points correspond to the experimental results, whilst 
the solid lines correspond to the predictions of (2.3) using the values B,, yn and u, 
obtained from the fit of the amplitude spectrum as shown in figure 9. We clearly note 
that the two curves (experimental and theoretical) are very different, indicating the 
presence of a dephasing of the experimental signal with respect to that predicted by 
(2.3). In  fact, by introducing a suitable dephasing Aq5 to the experimental data for 
8, and B; we obtain a very good agreement with the theoretical behaviour. We define 
the dephased experimental amplitudes (&)* and (q)* as 

- 

(a* = (mexp cos ( - Aq5) + (Qxp sin ( - 4) (3.8) 
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FIQURE 12. (a )  Dephased experimental results for the resonance n = 7. Points correspond to the 
dephased experimental data (Or)* as defined in (3.8) whilst the solid line corresponds to the 
theoreticalexpression obtained by solving (2.3) for the in-phase component. A$ = is given by the 
best fit of (Or)* with respect to the thEretica1 form. The best fit gives A$ = 67" 43. (b) As ( a )  but 
for the 90" out-of-phase component (O, ) * ,  for which the best fit gives Aq5 = 67" 5 .  

and 
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FIGURE 13. Dephasing Aq5 which must be introduced in the experimental data to fit the 

experimental resonances curves for the and (see figures 12a and 12b). 

(3.9) 

The best fit of these new dephased experimental data with respect to the theoretical 
curves of figures 11 ( a )  and 11 ( b )  by using A$ as a free parameter is shown in figures 
12 ( a )  and 12 ( b )  respectively. We find a satisfactory agreement between the dephased 
data and theoretical curves by obtaining best fit values of A$ for the two curves 
which coincide, within the experimental accuracy (A$ = 67" 43' for (%)* and Aq5 = 
67' 5' for (q)*. By using the same procedure to fit all the resonances (n = 1 , .  . . ,15 in 
figure 6) one obtains the dependence of this dephasing A$,, as a function of the 
number of the mode as shown in figure 13. The dephasing is negligible for the first 
excited mode and greatly increases as n increases to reach an almost constant value 
x 150" for large n. 

An analogous dephasing is found by using water wetting a cylindrical basin. This 
effect must be strictly related to the boundary conditions at the vertical walls (contact angle 
0 = 0). In fact, repeating the same experiment using water in a Plexiglas cylindrical 
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container where the static contact angle is 0 = 6 6 O ,  we do not find any appreciable 
dephasing and the phase behaviour agrees satisfactorily with the simple behaviour 
predicted by (2.3). 

This effect, together with the depression of the oscillation amplitude shown in 
figure 10, is probably related to the interaction between the oscillation of the free 
surface and the induced oscillation of the meniscus. In fact we note that the 
minimum of the surface wave amplitude in figure 10 occurs when the wavevector of 
the gravity-capillary surface wave is just of the order of the inverse of the capillary 
length h = (T/pg)f. 

4. Conclusions 
In  this paper the behaviour of resonant surface capillary-gravity waves in a 

cylindrical basin subjected to a horizontal oscillation has been investigated. In  the 
case of wetting boundary conditions on the vertical walls the frequency of modes is 
in good agreement with that predicted by assuming the standard boundary 
conditions (free-end edge). Therefore measuring the frequency of modes versus the 
wavevector furnishes a simple and accurate method of obtaining the surface tension 
of the fluid. 

The free decay of surface oscillations and the amplitude and phase of the response 
of the fluid surface to a horizontal periodic oscillation have a more complex 
behaviour. In particular the free decay exhibits a non-exponential time-dependence 
of the dissipation coefficient y which indicates a dependence of y on the amplitude 
of the surface wave. A similar nonlinear dependence of y on the amplitude has been 
predicted by Miles (1967) as due to the capillary effects a t  the vertical walls. An 
analogous but very weak dependence on the amplitude has been also observed for the 
frequency of the mode ( A U ) ~ J V  z 0.2 YO). This dependence greatly depends on the 
kind of boundary conditions at the walls and, thus, i t  seems to  be related to the fluid 
meniscus. 

Finally a strong dephasing (up to 150") between the experimental forced 
oscillations of the free surface and those predicted by a simple phenomenological 
model was observed. This effect is strictly connected with the presence of a wetting 
boundary condition for the fluid at  the vertical walls. 

We acknowledge Professor C. Festa for his helpful comments and advices. 
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